Step of Proof: can-apply-compose-iff
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
can-apply-compose-iff
:
1.
A
: Type
2.
B
: Type
3.
C
: Type
4.
g
:
A
(
B
+ Top)
5.
f
:
B
(
C
+ Top)
6.
x
:
A
7.
can-apply(
g
;
x
)
8.
can-apply(
f
;do-apply(
g
;
x
))
can-apply(
f
o
g
;
x
)
latex
by ((All (RepUR ``can-apply p-compose``))
CollapseTHEN ((((if (0
Co
) =0 then SplitOnConclITE else SplitOnHypITE (0))
)
THEN (Auto
))
))
latex
TH
.
Definitions
f
o
g
,
can-apply(
f
;
x
)
,
left
+
right
,
Unit
,
t
T
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
b
,
s
=
t
,
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
A
,
P
Q
,
False
Lemmas
eqtt
to
assert
,
iff
transitivity
,
eqff
to
assert
,
assert
of
bnot
origin